pGL3 Luciferase Reporter Vectors

INSTRUCTIONS FOR USE OF PRODUCTS E1741, E1751, E1761, E1771. PLEASE DISCARD PREVIOUS VERSIONS.

All Technical Literature is Available on the Internet at www.promega.com Please visit the web to verify that you are using the most current version of this Technical Manual.
I. Description 1
II. pGL3 Vector Maps and Sequence Reference Points 2
III. Product Components6
IV. Cloning Methods 6
A. Cloning Strategies 6
B. Preparation of pGL3 Vectors and Insert DNA for Cloning 6
C. Transformation Protocols for pGL3 Vectors 7
D. Isolation of Plasmid DNA 7
V. Transfection of Mammalian Cells 8
VI. Assay of Luciferase Activity9
VII. Generation of Nested Deletions 10
VIII. Generation of Single-Stranded DNA and Site-Specific Mutations 10
A. Production of Single-Stranded DNA 10
B. Generation of Site-Specific Mutations 11
IX. Sequencing of Luciferase Reporter Vectors 11
X. Appendix 12
A. Common Structural Elements of the pGL3 Luciferase Reporter Vectors 12
B. Advantages of the pGL3 Vectors 13
C. Description of Reporter Vector Changes 13
D. Distinguishing Features of the pGL3 Luciferase Reporter Vectors 15
E. Mapping Genetic Elements Located Within DNA Fragments 15
F. Composition of Buffers and Solutions 16
G. References 17
H. pGL3-Basic Vector Restriction Sites and Sequence. 19
I. pGL3-Enhancer Vector Restriction Sites and Sequence 24
J. pGL3-Promoter Vector Restriction Sites and Sequence 29
K. pGL3-Control Vector Restriction Sites and Sequence 34
Experienced User's Protocol 40

I. Description

The pGL3 Luciferase Reporter Vectors(a,b) provide a basis for the quantitative analysis of factors that potentially regulate mammalian gene expression. These factors may be cis-acting, such as promoters and enhancers, or trans-acting, such as various DNA-binding factors. The backbone of the pGL2 Luciferase Reporter Vectors(b) was redesigned for the pGL3 Vectors for increased expression, and
contains a modified coding region for firefly (Photinus pyralis) luciferase that has been optimized for monitoring transcriptional activity in transfected eukaryotic cells. The assay of this genetic reporter is rapid, sensitive and quantitative. In addition, the Luciferase Reporter Vectors contain numerous features aiding in the structural characterization of the putative regulatory sequences under investigation.

II. pGL3 Vector Maps and Sequence Reference Points

Figure 1. pGL3-Basic Vector circle map. Additional description: luc+, cDNA encoding the modified firefly luciferase; Ampr , gene conferring ampicillin resistance in E. coli; f1 ori, origin of replication derived from filamentous phage; ori, origin of replication in E. coli. Arrows within luc+ and the Ampr gene indicate the direction of transcription; the arrow in the f1 ori indicates the direction of ssDNA strand synthesis.
pGL3-Basic Vector Sequence Reference Points:

SV40 Promoter	(none)
SV40 Enhancer	(none)
Multiple cloning region	$1-58$
Luciferase gene (luc+)	$88-1740$
GLprimer2 binding site	$89-111$
SV40 late poly(A) signal	$1772-1993$
RVprimer4 binding site	$2080-2061$
ColE 1-derived plasmid replication origin	2318
β-lactamase gene (Ampr)	$3080-3940$
f1 origin	$4072-4527$
Synthetic poly(A) signal	$4658-4811$
RVprimer3 binding site	$4760-4779$

Figure 2. The pGL3-Enhancer Vector circle map. Additional description: luc+, cDNA encoding the modified firefly luciferase; Ampr, gene conferring ampicillin resistance in E. coli; f1 ori, origin of replication derived from filamentous phage; ori, origin of plasmid replication in E. coli. Arrows within luc+ and the Ampr gene indicate the direction of transcription; the arrow in f1 ori indicates the direction of ssDNA strand synthesis.

pGL3-Enhancer Vector Sequence Reference Points:

SV40 Promoter
Multiple
Multiple cloning region
Luciferase gene (luc+)
GLprimer2 binding site
SV40 late poly(A) signal
SV40 Enhancer
RVprimer4 binding site
ColE 1-derived plasmid replication origin
β-lactamase gene (Ampr)
f1 origin
Synthetic poly(A) signal
RVprimer3 binding site
(none)
1-58
88-1740
89-111
1772-1993 2013-2249 2307-2326

2564
3326-4186
4318-4773
4904-5057
5006-5025

Promega

Figure 3. The pGL3-Promoter Vector circle map. Additional description: luc+, cDNA encoding the modified firefly luciferase; Ampr, gene conferring ampicillin resistance in E. coli; f1 ori, origin of replication derived from filamentous phage; ori, origin of replication in E. coli. Arrows within luc+ and the Ampr gene indicate the direction of transcription; the arrow in f1 ori indicates the direction of ssDNA strand synthesis.

pGL3-Promoter Vector Sequence Reference Points:

Multiple cloning region	$1-41$
SV40 Promoter	$48-250$
Luciferase gene (luc+)	$280-1932$
GLprimer2 binding site	$281-303$
SV40 Enhancer	(none)
SV40 late poly(A) signal	$1964-2185$
RVprimer4 binding site	$2253-2272$
ColE 1-derived plasmid replication origin	2510
β-lactamase gene (Ampr)	$3272-4132$
f1 origin	$4264-4719$
Synthetic poly(A) signal	$4850-5003$
RVprimer3 binding site	$4952-4971$

Figure 4. pGL3-Control Vector circle map. Additional description: luc+, cDNA encoding the modified firefly luciferase; Ampr, gene conferring ampicillin resistance in E. coli; f1 ori, origin of replication derived from filamentous phage; ori, origin of replication in E. coli. Arrows within $l u c+$ and the Ampr gene indicate the direction of transcription; the arrow in f 1 ori indicates the direction of ssDNA strand synthesis.

pGL3-Control Vector Sequence Reference Points:

Multiple cloning region	$1-41$
SV40 Promoter	$48-250$
Luciferase gene (luc+)	$280-1932$
GLprimer2 binding site	$281-303$
SV40 late poly(A) signal	$1964-2185$
SV40 Enhancer	$2205-2441$
RVprimer4 binding site	$2499-2518$
ColE 1-derived plasmid replication origin	2756
$\beta-l a c t a m a s e ~ g e n e ~(A m p r) ~$	$3518-4378$
f1 origin	$4510-4965$
Synthetic poly(A) signal	$5096-5249$
RVprimer3 binding site	$5198-5217$

Figure 5. pGL3 Vector multiple cloning regions. The upstream and downstream cloning sites and the location of the sequencing primers, GLprimer2, RVprimer3 and RVprimer4 are shown. The large primer arrows indicate the direction of sequencing. The positions of the promoter (in the pGL3-Promoter and pGL3Control Vectors) and the enhancer (in the pGL3Enhancer and pGL3-Control Vectors) are shown as insertions into the sequence of the pGL3-Basic Vector. (Note that the promoter replaces four bases [AAGT] of the pGL3Basic Vector.) The sequence shown is of the DNA strand generated from the f1 ori.

III. Product Components

Product	Size	Cat.\#
pGL3-Control Vector (a, b)	$20 \mu \mathrm{~g}$	E1741
pGL3-Basic Vector (a, b)	$20 \mu \mathrm{~g}$	E1751
pGL3-Promoter Vector (a, b)	$20 \mu \mathrm{~g}$	E1761
pGL3-Enhancer Vector (a, b)	$20 \mu \mathrm{~g}$	E 1771

Vectors are supplied with a glycerol stock of bacterial strain JM109 cells. The JM109 cells do not contain the vector and are not competent cells. Information on related products, including the Luciferase Assay System, is provided in Sections III-VIII.

Product	Size	Cat.\#
GLprimer2 (counter clockwise)	$2 \mu \mathrm{~g}$	E1661
RVprimer3 (clockwise)	$2 \mu \mathrm{~g}$	E4481
RVprimer4 (counter clockwise)	$2 \mu \mathrm{~g}$	E4491

Storage Conditions: Store the pGL3 Luciferase Reporter Vectors at $-20^{\circ} \mathrm{C}$ and the glycerol stock of JM109 cells at $-70^{\circ} \mathrm{C}$.

IV. Cloning Methods

A. Cloning Strategies

The restriction sites for Xho I and Sal I have compatible ends, as do $\mathrm{Bg} / \mathrm{II}$ and BamH I. Therefore, cloning into the Xho I or Bgl II sites upstream of luc+, or the downstream Sal I or BamH I sites, allows for easy interchange of DNA inserts between upstream and downstream positions relative to the luciferase reporter gene. Thus, positional effects of a putative genetic element may be readily tested. Cloning fragments into a single site will generally yield both possible orientations relative to the reporter gene, making these effects also readily examinable.

The other upstream restriction sites may be used for cloning. However, note that some of the sites are required for generation of nested deletions (see Section VII). Specifically, the Kpn I or Sac I site is needed to generate a 3'-overhang upstream of the insert.

B. Preparation of pGL3 Vectors and Insert DNA for Cloning

The fragment and vector DNA should be digested with restriction enzymes that will generate compatible ends for cloning. In some cases, the ends of the DNA fragment may require modification, either by using synthetic linkers, by a PCR(c) amplification using primers containing sites for appropriate restriction enzymes, or by filling in the restriction site overhangs. It may be advantageous to treat the vector DNA with Calf Intestinal Alkaline Phosphatase (CIAP; Cat.\# M2825) or Shrimp Alkaline Phosphatase (Cat.\# M8201) to remove 5' phosphate groups, thus preventing reclosure of the vector on itself without an insert. Sufficient DNA should be prepared to perform control reactions for digestion, ligation and transformation steps.

To ensure capture of the correct insert DNA, the desired restriction fragment can be purified by electrophoresis on an acrylamide or agarose gel and then recovered from the gel by one of several methods, such as using the Wizard ${ }^{\circledR}$ PCR Preps DNA Purification System(d) Technical Bulletin, \#TB118. Alternatively, nonfractionated restriction fragments can be cloned into the target plasmid, and the desired recombinant can then be identified by gel electrophoresis of plasmid DNA.

Protocols for restriction digestion, alkaline phosphatase treatment, linker ligation and transformation of competent cells can be found in Promega's Protocols and Applications Guide (1) or in Molecular Cloning, A Laboratory Manual (2).

C. Transformation Protocols for pGL3 Vectors

Because the Luciferase Reporter Vectors are supplied as modified DNA, E. coli hosts may be either restriction + or restriction -. The Luciferase Reporter Vectors are supplied with JM109 bacterial cells (endA1, recA1, gyrA96, thi, hsd R17, (rk-, $\mathrm{m}_{\mathrm{K}+}$), relA1, supE44, Δ (lac-proAB), [F', traD36, proAB, laclaZ $\left.\Delta \mathrm{M} 15\right]$). The use of a recA host such as JM109 is preferred because this prevents undesirable recombination between the insert and the host chromosomal DNA. A strain that has an F^{\prime} episome is required for ssDNA production.

Grow JM109 on minimal plates (M-9) supplemented with 1.0 mM thiamine- HCl prior to preparation of competent cells and transformation. This selects for the presence of the F^{\prime} episome.

D. Isolation of Plasmid DNA

The Wizard® Plus SV Minipreps DNA Purification System(e) Technical Bulletin, \#TB225, or the Wizard ${ }^{\circledR}$ Plus Midipreps DNA Purification System(f) Technical Bulletin, \#TB173, may be used for small-scale preparation of plasmid DNA for screening clones. Large-scale DNA preparations can be made for sequencing or restriction digestion using the Wizard ${ }^{\circledR}$ Plus Maxipreps DNA Purification System ${ }^{(\dagger)}$ Technical Bulletin, \#TB139, or the Wizard® Plus Megapreps DNA Purification System ${ }^{(f)}$ Technical Bulletin, \#TB140. DNA suitable for transfection may be purified using a modification of the Wizard ${ }^{\circledR}$ Maxipreps protocol (3) or by using the Wizard ${ }^{\circledR}$ PureFection Plasmid DNA Purification System(g) Technical Bulletin, \#TB259, or by CsCl gradient preparation (4).

The following protocol allows for the rapid isolation of large quantities of plasmid DNA without the need for column purification or banding in CsCl gradients (4). The procedure takes advantage of the rapid alkaline denaturation of plasmid and chromosomal DNA and the selective renaturation of plasmid DNA following neutralization of the solution. The polyethylene glycol (PEG) precipitation step is included to help remove contaminants that could interfere with restriction digestions, sequencing procedures or transfection of mammalian cells.

The volume of the culture used may be adjusted depending upon the amount of DNA required for subsequent manipulations. The Luciferase Reporter Vectors are high copy number plasmids (200-300 copies per cell). Using the protocol described below, $150-500 \mu \mathrm{~g}$ of DNA can be obtained from a 250 ml culture.

Materials to Be Supplied by the User

(Solution compositions are provided in Section X.F.)

- LB medium
- Iysis buffer for plasmid preps
- TE-saturated phenol:chloroform: isoamyl alcohol
- TE buffer
- $13 \%(\mathrm{w} / \mathrm{v})$ polyethylene glycol (M.W. 6,000-8,000) in water
- potassium acetate solution (pH 4.8)

Note: An Experienced User's Protocol can be found at the end of this Technical Manual.

1. Prepare 250 ml of culture by incubating overnight in LB medium containing $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin.
2. Centrifuge the cells at $5,000 \times g$ for 15 minutes at $4^{\circ} \mathrm{C}$. Remove and discard the supernatant.
3. Resuspend the cells in 6 ml of freshly prepared ice-cold lysis buffer by careful pipetting with a 10 ml pipette. Incubate in ice water for 20 minutes.
4. Add 12 ml of $0.1 \mathrm{~N} \mathrm{NaOH}, 1 \%$ SDS (prepared fresh). Mix carefully and thoroughly by inversion. Do not vortex.
5. Add 7.5 ml of potassium acetate solution (pH 4.8). Mix carefully by inversion and incubate in ice water for 10 minutes.
6. Centrifuge at $12,000 \times g$ for 15 minutes. Transfer the supernatant to a fresh tube, avoiding the white precipitate. Add 50μ of RNase A ($1 \mathrm{mg} / \mathrm{ml}$ stock) to the supernatant. Incubate for 20 minutes at $37^{\circ} \mathrm{C}$.
7. Extract with 1 volume of TE-saturated phenol:chloroform:isoamyl alcohol. Centrifuge at $12,000 \times g$ for 10 minutes.
8. Save the upper, aqueous phase and repeat the TE-saturated phenol:chloroform:isoamyl alcohol extraction as described in Step 7 above.
9. Extract with one volume of chloroform:isoamyl alcohol (24:1) by vortexing for 1 minute. Centrifuge at $12,000 \times g$ for 10 minutes.
10. Transfer the upper, aqueous phase to a fresh tube and add 2 volumes of 100% ethanol. Centrifuge at $12,000 \times g$ for 20 minutes.
11. Optional: Dissolve the pellet in 1.6 ml of water. Add 0.4 ml of 4 M NaCl and mix . Add 2 ml of $13 \%(\mathrm{w} / \mathrm{v})$ polyethylene glycol (PEG, M.W. 6,000-8,000) and mix. Incubate in ice water for 60 minutes. PEG is used to separate small nucleotides from plasmid DNA. Centrifuge at $12,000 \times g$ for 10 minutes.
12. Remove the supernatant and wash the pellet with 70% ethanol. Centrifuge at $12,000 \times g$ for 5 minutes.
13. Dry the pellet under vacuum. Dissolve the pellet in water or TE buffer (100-500 μ l).

V. Transfection of Mammalian Cells

Transfection of DNA into eukaryotic cells may be mediated by cationic lipid compounds (5), calcium phosphate (6,7), DEAE-dextran (6,8), or electroporation (7). Transfection systems based on cationic lipids (e.g., Transfectam ${ }^{\circledR}$ Reagent ${ }^{(h)}$ [Cat.\# E1232], TransFast ${ }^{\text {TM }}$ Reagent ${ }^{(i)}$ [Cat.\# E2431], or Tfx ${ }^{\text {TM }}$ Reagents ${ }^{(j)}$ [Cat.\# E1811, E2381, E2391]), calcium phosphate and DEAE-dextran are available from Promega. For information on the Transfectam ${ }^{\circledR}$ protocol, please request the Transfectam® Reagent Technical Bulletin, \#TB116. For information regarding use of the TransFast ${ }^{\text {TM }}$ Transfection Reagent, request Technical Bulletin \#TB260. Protocols for the use of Tfx ${ }^{\text {TM }}$ Reagents are included in Technical Bulletin \#TB216. For transfection procedures using calcium phosphate or DEAE-dextran, please request the ProFection ${ }^{\circledR}$ Mammalian Transfection System Technical Manual, \#TM012 (Cat.\# E1200, E1210).

VI. Assay of Luciferase Activity

Experimental strategies using firefly luciferase may involve the analysis of a few samples per day or as many as several thousand samples per hour, and equipment used to measure luminescence may vary from inexpensive, single-sample luminometers to high-end CCD luminometers. To support this wide range of applications, Promega has developed three luciferase assays with different, but complementary, characteristics: Luciferase Assay System(k) (Cat.\# E1500), Bright-Glo™ Luciferase Assay System(k) (Cat.\# E2610), and Steady-Glo® Luciferase Assay System(k) (Cat.\# E2510). Reagent choice depends on weighing the relative importance of experimental format, assay sensitivity, and luminescence duration.

Table 1. Characteristics of Promega's Luciferase Assay Reagents.

	Bright-Glotm Reagent	Steady-Glo® Reagent	Luciferase Assay Reagent
Format	NH or H	NH or H	NH
Process	continuous	batch	bench scale
Number of Steps	1	1	4
Sensitivity	highest	lower	higher
Signal	~ 30 minutes	~ 5 hours	~ 12 minutes
Half-Life	High	High	High
Precision	High Cell Lysis Time	~ 2 minutes	~ 5 minutes
maximum	maximum	NA	
Reagent Prep	<30 seconds	<30 seconds	Up to
Time			40 minutes

$\mathrm{NH}=$ nonhomogeneous; $\mathrm{H}=$ homogeneous; $\mathrm{NA}=$ not applicable
The Luciferase Assay System has long been the standard reagent for routine laboratory analysis. Before using this reagent, cells from which the luciferase is to be measured must be washed and lysed. This reagent was optimized for high sensitivity in nonhomogeneous, single-sample measurements. The Luciferase Assay System requires a luminometer fitted with injectors to efficiently measure luminescence in 96 -well plates.

The Bright-Glo ${ }^{\text {TM }}$ and Steady-Glo ${ }^{\circledR}$ Reagents were developed to perform assay reactions within multiwell plates and in the presence of complete cell culture medium: no cell preparation steps such as washing or lysing are required before the luminescence reaction is initiated. Both of these are single-step reagents, requiring only addition of the reagent before measuring luminescence. This makes them ideal reagents for efficient and precise quantitation in 96 -, 384- and 1536-well plates.

The Bright-Glo ${ }^{\top \mathrm{M}}$ and Steady- Glo^{\circledR} Reagents are complementary in their characteristics based on the inverse relationship between luminescence duration and assay sensitivity (9). Generally as the half-life of the luminescence increases, assay sensitivity decreases. The Steady-Glo ${ }^{\circledR}$ Reagent provides very long luminescence duration (changing only about 10% per hour); however, to achieve this long luminescence duration, the assay sensitivity must be reduced. This reagent was designed for experimental designs in which many microplates are processed as a batch.

In contrast, the Bright-Glo ${ }^{\text {TM }}$ Reagent provides high assay sensitivity with lower luminescence duration ($<10 \%$ decrease per 5 minutes). This reagent is designed for general research applications and for experimental designs using robotics for continuous sample processing. Furthermore, as a result of increased sample capacity, the Bright-Glo™ Reagent provides greater assay sensitivity than the Luciferase Assay Reagent in most applications (9).

The Luciferase Assay System, Bright-Glo ${ }^{\text {TM }}$ Reagent and Steady-Glo ${ }^{\circledR}$ Reagent provide the highest standards in assay quantitation, sensitivity and convenience. Since these reagents are based on the same underlying design principles, different reagents can be used as experimental needs change. For more information request the Luciferase Assay System Technical Bulletin, \#TB281, the Steady-Glo ${ }^{\circledR}$ Luciferase Assay System Technical Manual, \#TM051, or the Bright-Glo ${ }^{\text {TM }}$ Luciferase Assay System Technical Manual, \#TM052.

VII. Generation of Nested Deletions

Unidirectional deletions of any inserted DNA can be made using a procedure developed by Henikoff (10) in which Exonuclease III (Exo III) is used to specifically digest insert DNA from a 5 ' protruding or blunt-ended restriction site. In the pGL3 Luciferase Reporter Vectors, these 5' overhangs are supplied by digesting the plasmid with BgIII, M/u I, Nhe I, Xho I or Xma I. When the plasmids are cut with Kpn I or Sac I, which yield 3' overhangs, the Exo III will be unable to digest in the other direction.

The uniform rate of enzyme digestion allows deletions of various lengths to be made simply by removing timed aliquots from the reaction. Given that small deletions (less than 500 bases) are probably desired, we recommend performing the reactions at a lower temperature (between $4-16^{\circ} \mathrm{C}$). Samples from the Exo III reaction are removed at timed intervals to tubes containing S1 nuclease, which removes the remaining single-stranded tails. The low pH and the presence of zinc cations in the S 1 buffer effectively inhibit further digestion by Exo III. After neutralization and heat inactivation of the S1 nuclease, Klenow DNA polymerase is added to flush the ends, which are then ligated to circularize the deletioncontaining vectors. The ligation mixtures are used directly to transform competent cells. Each successive time point yields a collection of subclones containing clustered deletions extending further into the original insert.

For a more detailed protocol, please request the Erase-a-Base ${ }^{\circledR}$ System Technical Manual, \#TM006.

VIII. Generation of Single-Stranded DNA and Site-Specific Mutations

A. Production of Single-Stranded DNA

To generate single-stranded DNA (ssDNA) from the pGL3 Vectors, bacterial cells containing pGL3 Vectors are infected with an appropriate helper phage. The plasmid then enters the f1 replication mode, and the resulting ssDNA is exported from the cell as an encapsulated phage-like particle. The singlestranded plasmid DNA is purified from the supernatant by simple precipitation and extraction procedures. Promega's Protocols and Applications Guide (1) contains protocols for the preparation and analysis of ssDNA suitable for mutagenesis and sequencing (1,11-13).

B. Generation of Site-Specific Mutations

Site-specific mutagenesis, as developed by Hutchinson et al. (14), is accomplished by hybridizing to ssDNA a synthetic oligonucleotide that is complementary to the single-stranded template except for a region of mismatch near the center. It is this region that contains the desired nucleotide change or changes. Following hybridization with the single-stranded target DNA, the oligonucleotide is extended with DNA polymerase to create a double-stranded structure. The nick is then sealed with DNA ligase, and the duplex structure is transformed into an E. coli host. Theoretically, the yield of mutants using the Hutchinson procedure should be 50% (due to semi-conservative replication). In practice, however, the mutant yield may be much lower, often only a few percent or less. This is assumed to be due to factors such as incomplete in vitro polymerization, primer displacement by the DNA polymerase used in the fill-in reaction, and in vivo host-directed mismatch repair mechanisms, which favor repair of the nonmethylated, newly synthesized DNA strand. Because of the low mutant yield, methods have been developed to increase the mutation frequency.

Promega's Altered Sites ${ }^{\circledR}$ II in vitro Mutagenesis Systems ${ }^{(1)}$ (Cat.\# Q6080, Q6090, Q6210) use antibiotic selection to obtain consistently high mutagenesis frequencies (often $>90 \%$) using ssDNA or dsDNA templates. These systems provide a simple, one-day procedure for generation and selection of oligonu-cleotide-directed mutants and include the ability to perform sequential rounds of mutagenesis without subcloning and to express the mutated gene products in vivo or in vitro. For further information, please request the Altered Sites ${ }^{\circledR}$ II in vitro Mutagenesis System Technical Manual, \#TM001.

IX. Sequencing of Luciferase Reporter Vectors

It may be desirable to sequence the DNA inserted into the Luciferase Reporter Vectors. Two examples of such applications are to determine the exact position of generated deletions (see Section VII) and to confirm production of a site-specific mutation (see Section VIII.B). Three primers are available for sequencing the pGL3 Vectors: RVprimer3 (Reporter Vector Primer 3) for sequencing clockwise across the upstream cloning sites, RVprimer4 for sequencing counterclockwise across the BamH I and Sa/ I cloning sites downstream of luc+, and GLprimer2 for sequencing counterclockwise upstream of luc+.

RVprimer3 5'-CTAGCAAAATAGGCTGTCCC-3'
RVprimer4 5^{\prime}-GACGATAGTCATGCCCCGCG-3'
GLprimer2 $\quad 5^{\prime}$-CTTTATGTTTTTGGCGTCTTCCA-3'
RVprimer3 is especially useful for identifying positions of nested deletions. Note that all three primers can be used for dsDNA sequencing, but only RVprimer4 and GLprimer2 can also be used for ssDNA sequencing.

There are many methods for DNA sequencing; the most appropriate method will depend on the specific application and on your experience. Thermal cycle sequencing takes advantage of the intrinsic properties of the DNA polymerase isolated from Thermus aquaticus (Taq DNA polymerase). Thermus aquaticus is an extremely thermophilic microorganism whose DNA polymerase shows thermal stability to $95^{\circ} \mathrm{C}$ $(15,16)$. Promega's $f m o l @(m, o)$ and SILVER SEQUENCE ${ }^{\text {TM }}$ DNA Sequencing Systems(m,n,o) include Promega's Sequencing Grade Taq DNA Polymerase(o)
(Cat.\# M2031, M2035), which is a modified form that gives superior results on dsDNA templates because it lacks $5^{\prime} \rightarrow 3^{\prime}$ exonuclease activity. Sequencing Grade Taq DNA Polymerase produces a uniform band intensity, low background and a high degree of accuracy.

These sequencing systems use a thermocycling apparatus that yields a linear amplification of template DNA, decreasing the amount of template necessary to obtain sequence data. The high temperatures used in this procedure eliminate the need for alkaline denaturation and ethanol precipitation of dsDNA templates. They also increase the stringency of primer hybridization, providing more accurate sequence data, and decrease DNA secondary structure, permitting polymerization through highly structured regions (16). The fmol® System (Cat.\# Q4100) provides the option of using either 32 P or 35 S radioactively end-labeled primers or direct incorporation of radioactive label for sequencing reactions. The SILVER SEQUENCE ${ }^{\text {TM }}$ System (Cat.\# Q4130), by contrast, uses silver staining detection to eliminate the need for radioactivity in sequencing reactions.

For further information, please request the fmol ${ }^{\circledR}$ or SILVER SEQUENCE ${ }^{\text {™ }}$ Sequencing System Technical Manuals, \#TM024 or \#TM023, respectively.

X. Appendix

A. Common Structural Elements of the pGL3 Luciferase Reporter Vectors

Except for the promoters and enhancers, the four pGL3 Luciferase Reporter Vectors are structurally identical. Each plasmid's distinguishing features are summarized in Section X.D. The pGL3 Vectors each contain a high copy number prokaryotic origin of replication for maintenance in E. coli, an ampicillin-resistance gene for selection, and a filamentous phage origin of replication (f1 ori) for single-stranded DNA (ssDNA) production. Restriction sites for insertion of DNA fragments are located upstream and downstream of the luciferase gene. Two of the upstream sites (Xhol and $\mathrm{Bg} / \mathrm{II}$) yield cohesive ends compatible with the downstream sites (Sal I and BamH I, respectively), allowing the interchange of the DNA insert for rapid analysis of positional effects.

Figure 6. Comparison of luciferase activities expressed in HeLa cells transfected with the pGL2-Control and pGL3-Control Reporter Vectors. The expression level of luc+ is dramatically higher with the pGL3-Control Vectors. In repeated experiments with several cell lines, we observed 20- to 100 -fold higher luciferase activity from cells transfected with pGL3Control. Luciferase activity was measured with a Turner Designs luminometer. (Absolute light values and relative expression profiles may vary between different cell types.)

[^0]

Figure 7. A representative experiment comparing luciferase activities expressed in HeLa cells transfected with the pGL2 and pGL3 Vector series. The increase in luciferase expression observed with these new vectors provides greater sensitivity, while maintaining relatively low background luciferase expression.

B. Advantages of the pGL3 Vectors

The pGL3 Luciferase Reporter Vectors provide significant advances over the pGL2 Reporter Vectors. The pGL3 Reporter Vectors contain a modified firefly luciferase cDNA designated luc+ and a redesigned vector backbone. These changes increase luciferase expression, improve in vivo vector stability, and provide greater flexibility in performing genetic manipulations. The modified reporter vectors result in luciferase expression levels dramatically higher than those obtained with pGL2 Reporter Vectors (Figure 6), while maintaining relatively low background luciferase expression (Figure 7).

The substantial increase in the expression of luciferase observed with these new vectors provides greater sensitivity. It may now be possible to obtain measurable luciferase expression in cell types that are difficult to transfect or when studying weak promoter elements. Users of the pGL2 and pGL3 Vectors should be aware, however, that absolute light unit values and relative expression profiles vary between different cell types (17). Therefore, it is important to include the appropriate control vectors in all experiments.

C. Description of the Reporter Vector Changes

Modifications were made to both the luciferase gene (luc+) and the vector backbone. The modifications that distinguish the luc+ gene from the native luciferase gene generally fall into four categories: i) the C-terminal tripeptide has been removed to eliminate peroxisome targeting of the expressed protein; ii) codon usage was improved for expression in plant and animal cells; iii) two potential sites of N -glycosylation were removed; and iv) several DNA sequence changes were made to disrupt extended palindromes, remove internal restriction sites, and eliminate consensus sequences recognized by genetic regulatory binding proteins, thus helping to ensure that the reporter gene itself is unaffected by spurious host transcriptional signals. (For a detailed description of the modifications to the luc+ gene, refer to \#TB208 and reference 19.)

Four major modifications were made to the pGL2 vector backbone: i) the SV40 early poly (A) signal has been replaced with the SV40 late poly (A) signal to increase the efficiency of transcription termination and polyadenylation of the luciferase transcripts (19); ii) a synthetic poly(A) and transcriptional pause site $(20,21)$ have been placed upstream of the multiple cloning site to terminate spurious transcription, which may initiate within the vector backbone; iii) the small T intron has been removed to prevent reduced reporter gene expression due to cryptic RNA splicing $(22,23)$; and iv) a Kozak consensus sequence (25) has been inserted to increase the efficiency of translation initiation of the luciferase gene (17; Table 2).
Table 2. Changes Made to the pGL3 Vectors.

Change from pGL2	Purpose of Modification	Reference
Modifications made to	Changes eliminate peroxisome	(18)
the luciferase gene	targeting of expressed protein,	
(luc to luc+).	eliminate consensus binding sequences for various genetic regulatory proteins, improve codon usage for mammalian and plant cells, and provide convenient restriction sites.	

A unique Nco I site created Ability to create N-terminal at 5^{\prime} end of luc+ gene. Ncol gene fusions with luc+ sites removed from SV40 using unique Ncol I site. enhancer and promoter regions.

Intron from SV40 small T antigen removed.	Intron from SV40 small T antigen can reduce expression when placed 3' of certain genes due to cryptic splicing.	$(23,24)$
Poly(A) site for back- ground reduction changed from SV40 early site to a synthetic poly(A) and transcriptional pause site.	Avoids possible recombination between two SV40 poly(A) sequences in the same plasmid.	$(20,21)$
Poly(A) signal for luc+ changed from early to	Late SV40 poly(A) signal is more efficient than early SV40	(19)
late SV40 poly(A) signal.	poly(A).	
Kozak consensus sequence created	Provides for optimal translation efficiency.	(25)

Unique Xba I site created just downstream of the luc+ gene.	User convenience; facilitates subcloning of the luc+ gene.
Sma I site moved to internal position in User convenience; blunt-ended inserts MCS. can now be cleaved on either side by restriction endonucleases.	

D. Distinguishing Features of the pGL3 Luciferase Reporter Vectors

Maps of the pGL3-Basic, pGL3-Promoter, pGL3-Enhancer and pGL3-Control Vectors are shown in Figures 1-4. The DNA sequences and listings of restriction sites for these vectors are provided in Section X.H-K.

pGL3-Basic

The pGL3-Basic Vector lacks eukaryotic promoter and enhancer sequences, allowing maximum flexibility in cloning putative regulatory sequences.
Expression of luciferase activity in cells transfected with this plasmid depends on insertion and proper orientation of a functional promoter upstream from luct. Potential enhancer elements can also be inserted upstream of the promoter or in the BamH I or Sal I sites downstream of the luc+ gene.

pGL3-Enhancer

The pGL3-Enhancer Vector contains an SV40 enhancer located downstream of luc+ and the poly(A) signal. This aids in the verification of functional promoter elements because the presence of an enhancer will often result in transcription of luc+ at higher levels.

pGL3-Promoter

The pGL3-Promoter Vector contains an SV40 promoter upstream of the luciferase gene. DNA fragments containing putative enhancer elements can be inserted either upstream or downstream of the promoter-luc+ transcriptional unit.

pGL3-Control

The pGL3-Control Vector contains SV40 promoter and enhancer sequences, resulting in strong expression of luc+ in many types of mammalian cells. This plasmid is useful in monitoring transfection efficiency, in general, and is a con-venient internal standard for promoter and enhancer activities expressed by pGL3 recombinants.

Note: The specific transcriptional characteristics of the pGL3 Vectors will vary for different cell types. This may be particularly true for COS cells, which contain the SV40 large T antigen. The SV40 large T antigen promotes replication from the SV40 origin, which is found in the promoter of the pGL3-Promoter and pGL3Control Vectors. The combination of large T antigen and SV40 origin will result in a higher copy number of these vectors in COS cells, which in turn may result in increased expression of the reporter gene compared to other cell and vector combinations.

E. Mapping Genetic Elements Located Within DNA Fragments

The locations of functional elements within a DNA fragment are often determined by making a set of unidirectional nested deletions following the method of Henikoff (10) and then assaying for changes in biological activity. This method takes advantage of the unique properties of Exonuclease III (Exo III), which will digest 5^{\prime} overhangs but not 3^{\prime} overhangs or α-phosphorothioate nucleotide filled-in overhangs. Nested deletions of an insert DNA can be made directly in the pGL3 family of Reporter Vectors using this method, eliminating the need for subcloning steps. The multiple cloning site of the pGL3 Vectors contains
upstream Kpn I and Sac I restriction sites, which can be used to generate the 3^{\prime} overhangs resistant to Exo III (Figures 1-5). After treatment with Exo III, S1 nuclease is added to remove the resulting ssDNA overhangs, and T4 DNA ligase is added to reclose the vectors. Deletion clones can be screened by gel electrophoresis of miniprep DNA, and the precise deletion endpoints within the promoter region can be determined by DNA sequencing using primers designed for the Luciferase Reporter Vectors.

F. Composition of Buffers and Solutions

lysis buffer for plasmid preps

25 mM	Tris-HCl (pH 7.5)
10 mM	EDTA
15%	sucrose
$2 \mathrm{mg} / \mathrm{ml}$	lysozyme
M-9 plates (per liter)	
6.0 g	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$
3.0 g	$\mathrm{KH}_{2} \mathrm{PO}_{4}$
0.5 g	NaCl^{1}
1.0 g	$\mathrm{NH}_{4} \mathrm{Cl}$
15 g	agar

Add deionized water to approximately 1 liter. Autoclave. Cool to $50^{\circ} \mathrm{C}$. Add the following sterilized solutions:
$2.0 \mathrm{ml} \quad 1 \mathrm{M} \mathrm{MgSO}_{4}$
$0.1 \mathrm{ml} \quad 1 \mathrm{M} \mathrm{CaCl}_{2}$
10.0 ml 20\% glucose (filtersterilized)
1.0 ml 1M thiamine- HCl

TE buffer (pH 8.0)

10 mM Tris-HCl (pH 8.0) 1 mM EDTA

TE-saturated phenol:chloroform:isoamyl alcohol

Mix equal parts of TE buffer and phenol and allow the phases to separate. Then mix 1 part of the lower, phenol phase with 1 part of chloroform: isoamyl alcohol (24:1).

LB medium (per liter)

10 g Bacto ${ }^{\circledR}$-tryptone
5 g Bacto ${ }^{\circledR}$-yeast extract 5 g NaCl

potassium acetate (pH 4.8)

Prepare 60 ml of 5 M potassium acetate. Add 11.5 ml of glacial acetic acid and 28.5 ml of water. This solution will be 3M with respect to potassium and 5 M with respect to acetate. Store at $4^{\circ} \mathrm{C}$.

G. References

1. Protocols and Applications Guide, Third Edition, (1996) Promega Corporation.
2. Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.
3. Brondyk, B. et al. (1994) A comparison of the Wizard ${ }^{\text {TM }}$ Maxipreps DNA Purification System and alkaline lysis/cesium chloride method for isolating trans-fection-quality plasmid DNA. Promega Notes 47, 2-5.
4. Birnboim, H.C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7, 1513-23.
5. Schenborn, E. and Goiffon, V. (1991) Optimization of Transfectam ${ }^{\circledR}$-mediated transfection using a luciferase reporter system. Promega Notes 33, 8-11.
6. Cullen, B.R. (1987) Use of eukaryotic expression technology in the functional analysis of cloned genes. Meth. Enzymol. 152, 684-704.
7. Ausubel, F.M. et al. (1988) Current Protocols in Molecular Biology, John Wiley and Sons, NY.
8. Rosenthal, N. (1987) Identification of regulatory elements of cloned genes with functional assays. Meth. Enzymol. 152, 704-20.
9. Hawkins, E., Butler, B. and Wood, K.V. (2000) Bright-Glo ${ }^{\text {TM }}$ and Steady-Glo ${ }^{\text {TM }}$ Luciferase Assay Systems: Reagents for academic and industrial applications. Promega Notes 75, 3-6.
10. Henikoff, S. (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Meth. Enzymol. 155, 156.
11. Dotto, G.P., Enea, V. and Zinder, N.D. (1981) Functional analysis of bacteriophage f1 intergenic region. Virology 114, 463-73.
12. Dotto, G.P. and Zinder, N.D. (1983) The morphogenetic signal of bacteriophage f1. Virology 130, 252-6.
13. Dotto, G.P., Huriuchi, K. and Zinder, N.D. (1984) The functional origin of bacteriophage f1 DNA replication. Its signals and domains. J. Mol. Biol. 172, 507-21.
14. Hutchison, C.A. et al. (1978) Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 253, 6551-60.
15. Chien, A., Edgar, D.B. and Trela, J.M. (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127, 1550-7.
16. Kaledin, A.S., Sliusarenko, A.G. and Gorodetskii, S.T. (1980) Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1. Biokhimiya 45, 644-51.
17. Innis, M.A. et al. (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci. USA 85, 9436-40.
18. Groskreutz, D.J. et al. (1995) Increased expression and convenience with the new pGL3 Luciferase Reporter Vectors. Promega Notes 50, 2.
19. Sherf, B.A. and Wood, K.V. (1994) Firefly luciferase engineered for improved genetic reporting. Promega Notes 49, 14-21.
20. Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. Mol. Cell. Biol. 9, 4248-58.
21. Levitt, N. et al. (1989) Definition of an efficient synthetic poly(A) site. Genes and Dev. 3, 1019-25.
22. Enriquez-Harris, P. et al. (1991) A pause site for RNA polymerase II is associated with termination of transcription. EMBO J. 10, 1833-42.
23. Evans, M.J. and Scarpulla, R.C. (1989) Introns in the 3^{\prime} untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression. Gene 84, 135-42.
24. Huang, M.T.F. and Gorman, C.M. (1990) The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell. Biol. 10, 1805-10.
25. Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-41.

H. pGL3-Basic Vector Restriction Sites and Sequence

The following restriction enzyme tables were constructed using DNASTAR ${ }^{\circledR}$ sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank ${ }^{\circledR}$ database (GenBank ${ }^{\circledR} / E M B L$ Accession Number U47295) and on the Internet at www.promega.com/vectors/.

Table 3. Restriction Enzymes That Cut the pGL3-Basic Vector Between 1 and 5 Times.

Enzyme	\# of Sites	Location	Enzyme	\# of Sites	Location
Acc I	1	2011	Eagl	3	1755,1759, 4651
Acc III	2	783, 1299	EclHK I	1	3153
Acc65 I	1	1	Eco47 III	1	2136
Acy I	4	$\begin{aligned} & 95,121,1514, \\ & 3690 \end{aligned}$	$\begin{aligned} & \text { Eco52 I } \\ & \text { EcolCR I } \end{aligned}$	3 1	$1755,1759,4651$
Afl III	3	15, 581, 2260	EcoN I	3	645, 1045, 1705
Alw26 I	5	1111, 1343, 1409,	Ehel	1	122
		3214, 3990	Fsel	1	1761
Alw44 I	2	2574, 3820	Fspl	2	3375, 4548
AlwN I	1	2676	Hinc II	3	1392, 1902, 2012
AspH I	5	$\begin{aligned} & 11,1553,2578, \\ & 3739,3824 \end{aligned}$	Hind II Hind III	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1392,1902,2012 \\ & 53 \end{aligned}$
Aval	3	26, 32, 1144	Hpal	1	1902
Avall	3	1267, 3291, 3513	Hsp92 I	4	95, 121, 1514, 3690
BamH I	1	2004	Kas I	1	120
Ban II	4	11, 33, 1112, 4231	Kpn I(p)	1	5
Bbe I	1	124	Mlu I	1	15
Bbs I	4	98, 1376, 1492,	Nae I	3	1759, 2130, 4199
		2089	Nar I	1	121
Bbul	1	751	Ncol	1	86
Bcll	1	668	NgoM IV	3	1757, 2128, 4197
$B g l \mid$	2	3273, 4541	Nhe I	1	21
Bgl II	1	36	Not I	1	4651
Bsal	1	3214	Nsp I	2	751, 2264
BsaA I	1	4302	PaeR7 I	1	32
BsaB I	1	2003	PpuM I	1	1267
BsaH I	4	95, 121, 1514,	PshA I	1	2075
		3690	Psp5 II	1	1267
BsaM I	3	60, 1823, 1916	PspA I	1	26
Bsm I	3	60, 1823, 1916	Pvul	2	3523, 4569
BspH I	3	671, 2980, 3988	Sac I	1	11
BspM I	3	1477, 1486, 4781	Sall	1	2010
Bsr BR I	1	2003	Scal	3	253, 3633, 4716
BsiG I	1	578	SgrA I	1	1516
BssS I	2	2433, 3817	Sin I	3	1267, 3291, 3513
BstZ I	3	1755, 1759, 4651	Smal	1	28
Cla 1	3	1997, 4709, 4813	Sph I	1	751
Csp45 I	1	257	Srf I	1	28
Dral	4	1963, 3019, 3038,	Sspl	3	3957, 4510, 4625
		3730	Sty I	1	86
Dra II	1	1267	Vspl	1	3325
Dra III	1	4305	Xba I	1	1742
Drd I	3	1489, 2368, 4349	Xcm I	1	823
Dsal	2	86, 458	Xhol	1	32
Eael	4	1755, 1759, 3541,	Xma I	1	26
		4651	Xmn I	1	3752

Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

Table 4. Restriction Enzymes That Do Not Cut the pGL3-Basic Vector.

Aat II	BbrP I	BstX I	Ndel	Ppu10 1	Spe I
Acc B7 1	Blp I	Bsu36I	Nru I	Pstl	Spll
Afl II	Bpu 11021	Csp I	Nsil	Pvu II	Sse8387 I
Age I	Bsp120 I	Eco72 I	Pacl	Rsr II	Stul
Apal	Bssh II	Eco81 I	PfIM I	Sac II	Swal
Ascl	Bst1107 I	EcoR I	PinA I	Sfil	Tth111 I
Avr II	Bst98 I	EcoR V	Pmel	Sgfl(q)	
Ball	BstE II	I-Ppol	Pm/ 1	SnaB I	

Table 5. Restriction Enzymes That Cut the pGL3-Basic Vector 6 or More Times.

Acil	Bst7 11	Fnu4 I	Hsp92 II	MspA1 I	ScrF I
Alu I	BstO I	Fok I	Mae I	Ncil	SfaNI
Ban I	BstU I	Hae II	Mae II	Nde I	Taq I
Bbv I	Cfol	Hae III	Mae III	NIa III	Tfil
Bsa0 1	Cfr10I	Hgal	Mbo I	Nla IV	Tru9 I
BsaJI	Dde I	Hhal	Mbo II	Ple I	Xho II
Bsp1286 I	Dpn I	Hinf I	MnII	Rsal	
Bsrl	Dpn II	Hpa II	Mse I	Sau3A I	
Bsr S I	Ear I	Hph I	Msp I	Sau96 I	

Note: The enzymes listed in boldface type are available from Promega.

pGL3-Basic Vector Sequence

The strand shown is the same as the ssDNA strand produced by this vector and also corresponds to the mRNA synthesized from the luc+ gene.

[^1]pGL3-Basic Vector Sequence (continued)

801 851 901 951 1001 1051

1101

2551 TCGTTCGCTC
AAGTGTTGTT ATTTGATATG CTGTTTCTGA GCCAACCCTA ATTTATCTAA GAAGTCGGGG AGGATATGGG GGGATGATAA AAGGTTGTGG CGAACTGTGT CGGAAGCGAC GACATAGCTT GAAGTCTCTG AATCCATCTT CTTCCCGACG GCACGGAAAG AAGTAACAAC GTACCGAAAG ССТСАТАAAG GGGGCGGCCG GGACAAACCA TTGTGATGCT TTAACAACAA TGGGAGGTTT TAAGGATCCG TTCCGGTGGG CTTTATCATG TСGСтСАСТ AGCTCACTCA CAGGAAAGAA AAGGCCGCGT TCACAAAAAT AAAGATACCA CCGACCCTGC CGTGGCGCTT CGTTCGCTC CAAGCTGGGC

ACGGTTTTGG GTCGTCTTAA GGATTACAAG TCGCCAAAAG ATTGCTTCTG CAAGAGGTTC CTACATCAGC GTCGGTAAAG CGGGAAAACG CTATGATTAT ATTGACAAGG

AGACGAACAC AAGGCTATCA CCCAACATCT TGAACTICCC AAAAAGAGAT TTGCGCGGAG AAAACTCGAC GCGGAAAGAT GCAGACATGA GCAGTGAAAA TTGTAACCAT CATTTTATGT GTAAAACCTC CССTTGAGAG GACTATCGTC GACAGGTGCC CTCGGTCGTT TACGGTTATC AAAGGCCAGC tTTCCATAGG GTCAGAGGTG CCTGGAAGCT ATACCTGTCC CACGCTGTAG TGTGTGCACG

AATGTTTACT ACACTCGGAT TGTATAGATT TGAAGAAGAG ATTCAAAGTG CGCTGCTGGT САСТСТGATT GACAAATACG GTGGCGCTCC ССTCTCTAAG CATCTGCCAG GTATCAGGCA TATTCTGATT ACACCCGAGG TTGTTCCATT TTTTGAAGCG CTGGGCGTTA ATCAAAGAGG GTCCGGTTAT GTAAACAATC ATGGATGGCT ACATTCTGGA TTCTTCATCG TTGACCGCCT GGTGGCTCCC GCTGAATTGG TCGACGCAGG TGTCGCAGGT GCCGCCGTTG TTGTTTTGGA CGTGGATTAC GTCGCCAGTC GAGTTGTGTT TGTGGACGAA GCAAGAAAAA TCAGAGAGAT CGCCGTGTAA TTCTAGAGTC TAAGATACAT TGATGAGTTT AAATGCTTTA TTTGTGAAAT TATAAGCTGC AATAAACAAG TTCAGGTTCA GGGGGAGGTG TACAAATGTG GTAAAATCGA ССтTСААССС AGTCAGCTCC GCCGCACTTA TGACTGTCTT GGCAGCGCTC TTCCGCTTCC CGGCTGCGGC GAGCGGTATC CACAGAATCA GGGGATAACG AAAAGGCCAG GAACCGTAAA CTCCGCCCCC CTGACGAGCA GCGAAACCCG ACAGGACTAT CCCTCGTGCG СтСтССтGTт GССтттСтСС СтTCGGGAAG GTATCTCAGT TCGGTGTAGG
AACCCCCCGT TCAGCCCGAC
pGL3-Basic Vector Sequence (continued)

2601 CGCTGCGCCT TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA

2651
2701
2751 2801

2851
2901
295
3001
3051 3101

3151
3201
3251
3301
3351

CGACTIATCG GGTATGTAGG TACACTAGAA GAACAGTATT CTTCGGAAAA AGAGTTGGTA GTAGCGGTGG TTTTTTTGTT GGATCTCAAG AAGATCCTTT GAACGAAAAC TCACGTTAAG TCTTCACCTA GATCCTTTTA AGTATATATG AGTAAACTTG GGCACCTATC TCCCCGTCGT AGTGCTGCAA AGCAATAAAC CTTTATCCGC AGTAGTTCGC CATCGTGGTG TCACGCTCGT CCCAACGATC AAGGCGAGTT GTTAGCTCCT GTTATCACTC CATCCGTAAG TGAGAATAGT GGATAATACC AACGTTCTTC AGTTCGATGT TTTCACCAGC AAAAGGGAAT TTTCAATATT CATATTTGAA TTCCCCGAAA GCGGGTGTGG AGCGCCCGCT GCIITCCCCG AGTGCTTTAC ACGTAGTGGG AGTCCACGTT AACCCTATCT CGGTCTATTC TTTTGATTTA

TAACAGGATT
AGTGGTGGCC
GCTCTGCTGA CGGCAAACAA

AGATTACGCG
ACGGGGTCTG CATGAGATTA GAAGTTTTAA TACCAATGCT TTCATCCATA AGGGCTTACC TCACCGGCTC GCGCAGAAGT GTTGCCGGGA GTTGTTGCCA GGCTTCATTC CCATGTTGTG AGAAGTAAGT TAATTCTCTT AGTACTCAAC TCTTGCCCGG AAAAGTGCTC TCTTACCGCT TGATCTTCAG AGGAAGGCAA GAATACTCAT TATTGTCTCA AATAGGGGTT GTAGCGGCGC GCTACACTTG CTTTCTCGCC TCCCTTTAGG CTTGATTAGG TTTTCGCCCT TCCAAACTGG TAAGGGATTT

AGCAGAGCGA TAACTACGGC AGCCAGTTAC ACCACCGCTG CAGAAAAAAA ACGCTCAGTG TCAAAAAGGA ATCAATCTAA TAATCAGTGA GTTGCCTGAC ATCTGGCCCC CAGATTTATC GGTCCTGCAA AGCTAGAGTA TTGCTACAGG AGCTCCGGTT CAAAAAAGCG TGGCCGCAGT ACTGTCATGC CAAGTCATTC CGTCAATACG ATCATTGGAA GTTGAGATCC CATCTTTTAC AATGCCGCAA АСТСТТССТт TGAGCGGATA CCGCGCACAT ATTAAGCGCG CCAGCGCCCT ACGTTCGCCG GTTCCGATTT GTGATGGTTC TTGACGTTGG AACAACACTC TGCCGATTTC
pGL3-Basic Vector Sequence (continued)

4451	GGCCTATTGG TTAAAAAATG	AGCTGATTTA	ACAAAAATTT	AACGCGAATT	
4501	TTAACAAAAT	ATTAACGCTT	ACAATTTGCC	ATTCGCCATT	CAGGCTGCGC
4551	AACTGTTGGG AAGGGCGATC	GGTGCGGGCC	TCTTCGCTAT	TACGCCAGCC	
4601	CAAGCTACCA	TGATAAGTAA	GTAATATTAA	GGTACGGGAG GTACTTGGAG	
4651	CGGCCGCAAT	AAAATATCTT	TATTTTCATT	ACATCTGTGT	GTTGGTTTTT
4701	TGTGTGAATC	GATAGTACTA	ACATACGCTC	TCCATCAAAAA	CAAAACGAAA
4751	CAAAACAAAC	TAGCAAAATA	GGCTGTCCCC	AGTGCAAGTG CAGGTGCCAG	
4801	AACATTTCTC	TATCGATA			

Promega

I. pGL3-Enhancer Vector Restriction Sites and Sequence

The following restriction enzyme tables were constructed using DNASTAR ${ }^{\circledR}$ sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3^{\prime} end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank ${ }^{\circledR}$ database (GenBank ${ }^{\circledR} / E M B L$ Accession Number U47297) and on the Internet at www.promega.com/ vectors/.

Table 6. Restriction Enzymes that cut the pGL3-Enhancer Vector Between 1 and 5 Times.

Enzyme	\# of Sites	Location	Enzyme	\# of Sites	Location
$\overline{A c c} 1$	1	2257	Dsal	2	86, 458
Acc III	2	783,1299	Eael	4	1755, 1759, 3787,
Acc65 1	1	1			4897
Acy I	4	95, 121, 1514,	Eag I	3	1755, 1759, 4897
		3936	Ec/HK I		3399
Aff III	3	15, 581 ,2506	Eco47 III	1	2382
Alw26 I	5	1111, 1343, 1409,	Eco52 I	3	1755, 1759, 4897
		3460, 4236	EcoICR I	1	9
Alw44 I	2	2820, 4066	EcoN I	3	645, 1045, 1705
A/wN I	1	2922	Ehe I	1	122
$A s p H$ I	5	11, 1553, 2824,	Fsel	1	1761
		3985, 4070	Fspl	2	3621, 4794
Aval	3	26, 32, 1144	Hinc II	3	1392, 1902, 2258
Avall	3	1267, 3537, 3759	Hind II	3	1392, 1902, 2258
BamH I	1	2250	Hind III	1	53
Ban II	4	11, 33, 1112,	Hpal	1	1902
		4477	Hsp92 I	4	95, 121, 1514,
Bbel	1	124			3936
Bbs I	4	98, 1376, 1492,	Kas I	1	120
		2335	Kpn I	1	5
Bbul	3	751, 2108, 2180	MIu I	1	15
Bcll	1	668	Nael	3	1759, 2376, 4445
BgII	2	3519, 4787	Nar I	1	121
BgIII	1	36	Ncol	1	86
Bsal	1	3460	NgoM IV	3	1757, 2374, 4443
BsaA I	1	4548	Nhe I	1	21
BsaB I	1	2003	Not 1	1	4897
BsaH I	4	95, 121, 1514,	Nsil	2	2106, 2178
		3936	Nspl	4	751, 2108, 2180,
BsaM I	3	60, 1823, 1916			2510
Bsm I	3	60, 1823, 1916	PaeR7 1	1	32
$B s p \mathrm{H}$	3	671, 3226, 4234	Ppu10 1	2	2102, 2174
BspM I	3	1477, 1486, 5027	PpuM I	1	1267
Bsr BRI	1	2003	PshA I	1	2321
$B s$ GI	1	578	Psp5 II	1	1267
BssSI	2	2679, 4063	PspA I	1	26
BstZ I	3	1755, 1759, 4897	Pvul	2	3769, 4815
Clal	3	1997, 4955, 5059	Sac I	1	11
Csp45 I	1	257	Sall	1	2256
Dral	4	1963, 3265, 3284,	Scal	3	253, 3879, 4962
		3976	SgrA I	1	1516
Dra II	1	1267	Sin I	3	1267, 3537, 3759
Dra III	1	4551	Smal	1	28
Drd I	3	1489, 2614, 4595	Sph 1	3	751, 2108, 2180

[^2]Table 6. Restriction Enzymes That Cut the pGL3-Enhancer Vector Between 1 and 5 Times (continued).

Enzyme	\# of Sites	Location
Srf I	1	28
Ssp I	3	4203,4756,
		4871
Sty I	1	86
Vsp I	1	3571

Enzyme	\# of Sites	Location
Xba I	1	1742
Xcm I	1	823
Xho I	1	32
Xma I	1	26
Xmn I	1	3998

Table 7. Restriction Enzymes That Do Not Cut the pGL3-Enhancer Vector.

Aat II	BbrP I	Bst X I	Nde I	Pvu II	Sse8387 1
Acc B7 I	Blp I	Bsu36 I	Nru I	Rsr II	Stul
Afl II	Bpu 1102\|	Cspl	Pacl	Sac II	Swal
Age I	Bsp120 I	Eco72 I	PfiM I	Sfil	TthlII I
Apal	BssH II	Eco811	PinA I	Sgfl	
Ascl	Bst1107 I	EcoR I	Pmel	Sna I	
Avr II	Bst98I	EcoR V	Pmlı	Spel	
Ball	BstE II	I-Ppol	Pstl	Spl 1	

Table 8. Restriction Enzymes That Cut the pGL3-Enhancer Vector 6 or More Times.

$\overline{A c i l}$	Bst7 11	Fnu4H I	Hsp92 II	MspA1 1	ScrF I
AluI	BstO I	Fokl	Mael	Ncil	SfaN I
Ban I	BstU I	Hae II	Mae II	Nde II	Taq I
Bbv 1	Cfol	Hae III	Mae III	Nla III	Tfil
Bsa0 I	Cfriol	Hgal	Mbol	Nla IV	Tru9 I
BsaJ I	Dde I	Hhal	Mbo II	Plel	Xho II
Bsp1286 I	Dpn I	Hinf I	Mnl 1	Rsal	
Bsrl	Dpn II	Hpa II	Mse I	Sau3 1	
BsrS I	Ear I	Hphl	Msp I	Sau96 I	

Note: The enzymes listed in boldface type are available from Promega.
pGL3-Enhancer Vector Sequence
The strand shown is the same as the ssDNA strand produced by this vector and also corresponds to the mRNA synthesized from the luc+ gene.

1 GGTACCGAGC TCTTACGCGT
51 GTAAGCTTGG CATTCCGGTA
101 AAAACATAAA GAAAGGCCCG
151 GCTGGAGAGC AACTGCATAA
201 AACAATTGCT TTTACAGATG
251 AGTACTTCGA AATGTCCGTT
301 CTGAATACAA
351 CTTTATGCCG
401 CGAACGACAT
451 CAGCCTACCG
TGGTGTTCGT

GCTAGCCCGG GCTCGAGATC TGCGATCTAA CTGTTGGTAA AGCCACCATG GAAGACGCCA GCGCCATTCT ATCCGCTGGA AGATGGAACC GGCTATGAAG AGATACGCCC TGGTTCCTGG CACATATCGA GGTGGACATC ACTTACGCTG CGGTTGGCAG AAGCTATGAA ACGATATGGG CGTCGTATGC AGTGAAAACT CTCTTCAATT CGTTATTTAT CGGAGTTGCA GTTGCGCCCG CGTGAATTGC TCAACAGTAT GGGCATTTCG TTCCAAAAAG GGGTTGCAAA AAATTTTGAA
pGL3-Enhancer Vector Sequence (continued)

501

CGTGCAAAAA AAGCTCCCAA AAACGGATTA СТАССТСССG GGACAAGACA ATTGCACTGA CTAAAGGTGT GCCAGAGATC AAGTGTTGTT ATTTGATATG CTGTTTCTGA GCCAACCCTA ATTTATCTAA GAAGTCGGGG AGGATATGGG GGGATGATAA ACCGGGCGCG AAGGTTGTGG ATCTGGATAC CGAACTGTGT CGGAAGCGAC CAACGCCTTG GACATAGCTT GAAGTCTCTG AATCCATCTT CTTCCCGACG GCACGGAAAG AAGTAACAAC GTACCGAAAG CCTCATAAAG GGGGCGGCCG GGACAAACCA CAACTAGAAT TTGTGATGCT ATTGCTTTAT TTAACAACAA CAATTGCATT TGGGAGGTTT TTTAAAGCAA TAAGGATCTG AACGATGGAG GGGCGGGATG GGCGGAGTTA GATGCATGCT TTGCATACTT CACCTGGTTG CTGACTAATT TGGGGAGCCT GGGGACTTTC GATCCGTCGA CCGATGCCCT

ACACGTTCGT GTGCCAGAGT CTCTGGATCT CCTGCGTGAG ATTCCGGATA AATGTTTACT TGTATAGATT ATTCAAAGTG CACTCTGATT GTGGCGCTCC CATCTGCCAG TATTCTGATT TTGTTCCATT CTGGGCGTTA GTCCGGTTAT ATGGATGGCT TTCTTCATCG GGTGGCTCCC TCGACGCAGG GCCGCCGTTG CGTGGATTAC GAGTTGTGTT GCAAGAAAAA CGCCGTGTAA TAAGATACAT

AAATGCTTTA
TATAAGCTGC TTCAGGTTCA TACAAATGTG GCGGAACTGG TATGGTTGCT GGGAGCCTGG CTTTGCATAC CTGACACACA

CAACCCAGTC

ATGGATTCTA CACATCTCAT CCTTCGATAG ACTGGTCTGC ATTCTCGCAT CTGCGATTTT ACACTCGGAT TGAAGAAGAG CGCTGCTGGT GACAAATACG CCTCTCTAAG GTATCAGGCA ACACCCGAGG TTTTGAAGCG ATCAAAGAGG GTAAACAATC ACATTCTGGA TTGACCGCCT GCTGAATTGG TGTCGCAGGT TTGTTTTGGA GTCGCCAGTC TGTGGACGAA TCAGAGAGAT TTCTAGAGTC TGATGAGTTT TTTGTGAAAT AATAAACAAG GGGGGAGGTG GTAAAATCGA GCGGAGTTAG GACTAATTGA GGACTTTCCA TTCTGCCTGC TTCCACAGCG AGCTCCTTCC
pGL3-Enhancer Vector Sequence (continued)

2301
2351
2401
2451
2501
2551
2601
2651
2701
2751
2801
2851
2901
2951
3001
3051
3101
3151
3201
3251
3301
3351
3401
3451
3501
3551
3601
3651
3701
3751
3801
3851
3901
3951
4001
4051
4101

GGTGGGCGCG ATCATGCAAC TCACTGACTC CACTCAAAGG AAAGAACATG CCGCGTTGCT AAAAATCGAC ATACCAGGCG CCCTGCCGCT GCGCTTTCTC TCGCTCCAAG GCGCCTTATC TTATCGCCAC TGTAGGCGGT CTAGAAGAAC GGAAAAAGAG CGGTGGTTTT CTCAAGAAGA GAAAACTCAC CACCTAGATC TATATGAGTA ССТАТСТСAG CGTCGTGTAG CTGCAATGAT ATAAACCAGC ATCCGCCTCC GTTCGCCAGT GTGGTGTCAC ACGATCAAGG GCTCCTTCGG TCACTCATGG CGTAAGATGC AATAGTGTAT AATACCGCGC TTCTTCGGGG CGATGTAACC

ACCAGCGTTT

GGGCATGACT ATCGTCGCCG TCGTAGGACA GGTGCCGGCA GCTGCGCTCG

CGGTAATACG TGAGCAAAAG GGCGTTTTTC GCTCAAGTCA TTTCCCCCTG TACCGGATAC ATAGCTCACG CTGGGCTGTG CGGTAACTAT TGGCAGCAGC GCTACAGAGT AGTATTTGGT TTGGTAGCTC TTTGTTTGCA TCCTTTGATC GTTAAGGGAT CTTTTAAATT AACTTGGTCT CGATCTGTCT ATAACTACGA ACCGCGAGAC CAGCCGGAAG ATCCAGTCTA TAATAGTTTG GCTCGTCGTT CGAGTTACAT TCCTCCGATC TTATGGCAGC TTTTCTGTGA GCGGCGACCG CACATAGCAG CGAAAACTCT CACTCGTGCA CTGGGTGAGC

CACTTATGAC GCGCTCTTCC TGCGGCGAGC GAATCAGGGG GGCCAGGAAC GCCCCCCTGA CGAGCATCAC AACCCGACAG GACTATAAAG CGTGCGCTCT CCTGTTCCGA TTCTCCCTTC GGGAAGCGTG CTCAGTTCGG TGTAGGTCGT CCCCGTTCAG CCCGACCGCT CCAACCCGGT AAGACACGAC AGGATTAGCA GAGCGAGGTA GTGGCCTAAC TACGGCTACA TGCTGAAGCC AGTTACCTTC AAACAAACCA CCGCTGGTAG TACGCGCAGA AAAAAAGGAT GGTCTGACGC TCAGTGGAAC AGATTATCAA AAAGGATCTT TTTTAAATCA ATCTAAAGTA AATGCTTAAT CAGTGAGGCA TCCATAGTTG CCTGACTCCC CTTACCATCT GGCCCCAGTG CGGCTCCAGA TTTATCAGCA AGAAGTGGTC CTGCAACTTT CCGGGAAGCT AGAGTAAGTA TTGCCATTGC TACAGGCATC TCATTCAGCT CCGGTTCCCA GTTGTGCAAA AAAGCGGTTA GTAAGTTGGC CGCAGTGTTA TCTCTTACTG TCATGCCATC CTCAACCAAG TCATTCTGAG GCCCGGCGTC AATACGGGAT GTGCTCATCA TTGGAAAACG ACCGCTGTTG AGATCCAGTT CTTCAGCATC TTTTACTTTCAGGCAAAATG CCGCAAAAAA

pGL3-Enhancer Vector Sequence (continued)					
4151	GGGAATAAGG	GCGACACGGA	AATGTTGAAT	ACTCATACTC	TTCCTTTTTC
4201	AATATTATTG	AAGCATTTAT	CAGGGTTATT	GTCTCATGAG	CGGATACATA
4251	TTTGAATGTA	TTTAGAAAAA	TAAACAAATA	GGGGTTCCGC	GCACATTTCC
4301	CCGAAAAGTG	CCACCTGACG	CGCCCTGTAG	CGGCGCATTA	AGCGCGGCGG
4351	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG
4401	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT
4451	TCCCCGTCAA	GCTCTAAATC	GGGGGCTCCC	TTTAGGGTTC	CGATTTAGTG
4501	CTTTACGGCA	CCTCGACCCC	AAAAAACTTG ATTAGGGTGA	TGGTTCACGT	
4551	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	CGTTGGAGTC
4601	CACGTTCTTT	AATAGTGGAC	TCTTGTTCCA AACTGGAACA ACACTCAACC		
4651	CTATCTCGGT	CTATTCTTTT	GATTTATAAG	GGATTTTGCC	GATTTCGGCC
4701	TATTGGTTAA	AAAATGAGCT	GATTTAACAA	AAATTTAACG	CGAATTTTAA
4751	CAAAATATTA	ACGCTTACAA	TTTGCCATTC	GCCATTCAGG	CTGCGCAACT
4801	GTTGGGAAGG	GCGATCGGTG	CGGGCCTCTT	CGCTATTACG	CCAGCCCAAG
4851	CTACCATGAT	AAGTAAGTAA	TATTAAGGTA	CGGGAGGTAC	TTGGAGCGGC
4901	CGCAATAAAA	TATCTTTATT	TTCATTACAT	CTGTGTGTTG	GTTTTTTGTG
4951	TGAATCGATA	GTACTAACAT	ACGCTCTCCA	TCAAAACAAA	ACGAAACAAA
5001	ACAAACTAGC	AAAATAGGCT	GTCCCCAGTG	CAAGTGCAGG TGCCAGAACA	

[^3]
J. pGL3-Promoter Vector Restriction Sites and Sequence

The following restriction enzyme tables were constructed using DNASTAR ${ }^{\circledR}$ sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank ${ }^{\circledR}$ database (GenBank ${ }^{\circledR} / E M B L$ Accession Number U47298) and on the Internet at www.promega.com/vectors/.

Table 9. Restriction Enzymes That Cut the pGL3-Promoter Vector Between 1 and 5 Times.

Enzyme	\# of Sites	Location	Enzyme	\# of Sites	Location
$\overline{A c c I}$	1	2203	Eael	4	1947, 1951, 3733,
Acc III	2	975, 1491			4843
Acc65 1	1	1	Eag I	3	1947, 1951, 4843
Acy I	4	28, 313, 1706, 3882	Ec/HK I	1	3345
Afl III	3	15, 773, 2452	Eco47 III	1	2328
Alw26 I	5	$\begin{aligned} & 1303,1535,1601, \\ & 3406,4182 \end{aligned}$	$\begin{aligned} & \text { Eco52 I } \\ & \text { EcolCR I } \end{aligned}$	3 1	$\begin{aligned} & 1947,1951,4843 \\ & 9 \end{aligned}$
Alw44 I	2	2766, 4012	EcoN I	3	837, 1237, 1897
AlwN I	1	2868	Ehel	1	314
AspH I	5	11, 1745, 2770,	Fsel	1	1953
		3931, 4016	Fsp I	2	3567, 4740
Aval	3	26, 32, 1336	Hinc II	3	1584, 2094, 2204
Ava II	3	1459, 3483, 3705	Hind II	3	1584, 2094, 2204
Avr II	1	229	Hind III	1	245
BamH I	1	2196	Hpal	1	2094
Ban II	4	11, 33, 1304, 4423	Hsp92 I	4	287, 313, 1706, 3882
Bbe I	1	316	Kas I	1	312
Bbs I	4	290, 1568, 1684	Kpn I	1	5
		2281	Mlu I	1	15
Bbul	1	943	Nael	3	1951, 2322, 4391
$B c l l$	1	860	Nar I	1	313
$B g / I$	3	182, 3465, 4733	Ncol	1	278
Bgl II	1	36	NgoM IV	3	1949, 2320, 4389
Bsal	1	3406	Nhe I	1	21
BsaA I	1	4494	Not I	1	4843
BsaB I	2	48, 2195	Nspl	2	943, 2456
BsaH I	4	287, 313, 1706, 3882	PaeR7 I	1	32
BsaM I	3	252, 2015, 2108	PpuM I	1	1459
Bsm I	3	252, 2015, 2108	PshA I	1	2267
BspH I	3	863, 3172, 4180	Psp5 II	1	1459
BspM I	3	1669, 1678, 4973	PspA I	1	26
Bsr BR I	2	48, 2195	Pvul	2	3715, 4761
Bsig I	1	770	Sacl	1	11
BssS I	2	2625, 4009	Sall	1	2202
BstZ I	3	1947, 1951, 4843	Scal	3	445, 3825, 4908
Cla 1	3	2189, 4901, 5005	Sfi I	1	182
Csp45 I	1	449	SgrA I	1	1708
Dral	4	2155, 3211, 3230,	Sin 1	3	1459, 3483, 3705
		3922	Sma I	1	28
Dra II	1	1459	Sph I	1	943
Dra III	1	4497	Srf I	1	28
Drd I	3	1681, 2560, 4541	Sspl	3	4149, 4702, 4817
Dsal	2	278, 650	Stu I	1	228

Table 9. Restriction Enzymes That Cut the pGL3-Promoter Vector Between 1 and 5 Times (continued).

Enzyme	\# of Sites	Location
Sty	2	229,278
Vsp I	1	3517
Xba I	1	1934
Xcm I	1	1015

Enzyme	\# of Sites	Location
Xhol	1	32
Xma I	1	26
Xmn I	1	3944

Table 10. Restriction Enzymes That Do Not Cut the pGL3-Promoter Vector.

Aat II	Blp I	Bsu36I	Nrul	PstI	Sse8387 I
Acc B7 I	Bpu 1102\|	Csp I	Nsil	Pvu II	Swal
Afl II	Bsp120 I	Eco72 I	Pacl	Rsr II	Tth111 I
Age I	BssH II	Eco81I	PfiM I	Sac II	
Apal	Bst1107 I	EcoR I	PinA I	Sgfl	
Ascl	Bst98I	EcoR V	Pmel	Sna I	
Ball	BstE II	I-Ppol	Pm/ 1	Spe I	
BbrP I	Bst X I	Nde I	Ppu10 I	Sp/ 1	

Table 11. Restriction Enzymes That Cut the pGL3-Promoter Vector 6 or More Times.

Acil	Bst71 1	Fnu4H I	Hsp92 II	MspA1 I	ScrF I
AluI	BstO I	Fokl	Mael	Ncil	SfaN I
Ban I	BstU I	Hae II	Mae II	Nde II	TaqI
Bbv 1	Cfol	Hae III	Mae III	Nla III	Tfil
Bsa0 I	Cfr10I	Hgal	Mbol	Nla IV	Tru9 I
BsaJ I	Ddel	Hhal	Mbo II	Plel	Xho II
Bsp1286 I	Dpn I	Hinf I	Mn/l	Rsal	
Bsrl	Dpn II	Hpa II	Mse I	Sau3 1	
Bsrs I	Ear I	Hphl	Msp I	Sau96 I	

Note: The enzymes listed in boldface type are available from Promega.

pGL3-Promoter Vector Sequence

The strand shown is the same as the ssDNA strand produced by this vector and corresponds to the mRNA synthesized from the luc+ gene.

1 GGTACCGAGC TCTTACGCGT GCTAGCCCGG GCTCGAGATC TGCGATCTGC
51 ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG 101 CCCCTAACTC CGCCCAGTTC CGCCCATTCT CCGCCCCATC GCTGACTAAT 151 TTTTTTTATT TATGCAGAGG CCGAGGCCGC CTCGGССТСТ GAGCTATTCC 201 AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC TAGGCTTTTG CAAAAAGCTT 251 GGCATTCCGG TACTGTTGGT AAAGCCACCA TGGAAGACGC CAAAAACATA 301 AAGAAAGGCC CGGCGCCATT СTATCCGCTG GAAGATGGAA CCGCTGGAGA 351 GCAACTGCAT AAGGCTATGA AGAGATACGC CCTGGTTCCT GGAACAATTG 401 CTTTTACAGA TGCACATATC GAGGTGGACA TCACTTACGC TGAGTACTTC 451 GAAATGTCCG TTCGGTTGGC AGAAGCTATG AAACGATATG GGCTGAATAC

[^4]pGL3-Promoter Vector Sequence (continued)

	AAATCACAGA	ATCGTCGTAT	GCAGTGAAAA	СТСТСТТСАА	
	CGGTGTTGGG	C			
	ATTTATAATG	AACGTGAATT			CGCAGCCTAC
	TACCAGGGAT	TTCAGTCGAT			
		GAATACGATT		CAT	
		GATCATGAAC			
901	GTCGCTCTGC	CTCATAGAAC			
951					
		TCA			
		GAGTCGTCTT			
		CAGGATTACA			
	T	CTTCGCCAAA		TTGACAAATA	
	A	AAA			
	G	GCCAAGAGGT			
	A	CGGTCGGTAA			CGAAGGTTGT
	GGATCTGGAT	ACCGGGAAA			
	G	TCC	ATGTCCGGTT	ATGTAAACAA	TCCGGAAGCG
	ACCAACGCCT	TGATTGACAA	GGATGGATGG	CTACATTCTG	AGACATAGC
		GAAGA			
		CAAAGGCTAT	CAGGTGGCTC		
	THGCTC	CC			
	CGATGACGCC	GGTGAACTT		TTGTTTTG	GAGCACGGAA
	AGACG	GGA			TCAAGTAACA
	A	AGTTGCGCG	AGGA		
	AGGTCTTACC	GGAAAAC			CCTCATAA
	G	GGGC			CGGGGCGGC
	C	GAGCAGACAT	GAT		TGGACAAAC
	C	T	,		
	СтATTGCTT	TTGTAAC	A	AATAAAC	GTTAACAAC
2101	AACAATTG	TC	TTTCAGGTT	GGGGAGG	GI
51	C	AAGTAAAACC	TCTACAAATG		ATAAGGATC
2201	CGTCGACCGA	TGCCCTTGAG	CCTTCAAC	GTCAGCT	
	GGCGCGGGGC	ATGACTATC	TCGCCGCACT	CTGTC	
01	TGCAACT	AGGACAGGTG	CCGGCAGCGC	C	

pGL3-Promoter Vector Sequence (continued)

2351

TGACTCGCTG CGCTCGGTCG CAAAGGCGGT AACATGTGAG GTTGCTGGCG ATCGACGCTC AAGTCAGAGG CAGGCGTTTC GCCGCTTACC TTTCTCATAG TCCAAGCTGG CTTATCCGGT CGCCACTGGC AGCAGCCACT GGCGGTGCTA CAGAGTTCTT AAGAACAGTA TTTGGTATCT AAAGAGTTGG TAGCTCTTGA GGTTTTTTTG TTTGCAAGCA AGAAGATCCT TTGATCTTTT ACTCACGTTA AGGGATTTTG TAGATCCTTT TGAGTAAACT TCTCAGCGAT GTGTAGATAA AATGATACCG ACCAGCCAGC GCCTCCATCC GCCAGTTAAT TGTCACGCTC TCAAGGCGAG CTTCGGTCCT TCATGGTTAT AGATGCTTTT CTGTGACTGG TGAGTACTCA GTGTATGCGG CGACCGAGTT GCTCTTGCCC CCGCGCCACA TAGCAGAACT TTAAAAGTGC TCGGGGCGAA AACTCTCAAG GATCTTACCG GTAACCCACT CGTGCACCCA ACTGATCTTC GCGTTTCTGG GTGAGCAAAA ACAGGAAGGC ATAAGGGCGA CACGGAAATG TTGAATACTC TTATTGAAGC ATTTATCAGG GTTATTGTCT

GCGAGCGGTA CAGGGGATAA AGGAACCGTA CCCTGACGAG CGACAGGACT CGCTCTCCTG CCCTTCGGGA GTTCGGTGTA GTTCAGCCCG CCCGGTAAGA TTAGCAGAGC CCTAACTACG GAAGCCAGTT

AAACCACCGC CGCAGAAAAA TGACGCTCAG TATCAAAAAG AAATCAATCT CTTAATCAGT TAGTTGCCTG CCATCTGGCC TCCAGATTTA GTGGTCCTGC GAAGCTAGAG CATTGCTACA TCAGCTCCGG TGCAAAAAAG GTTGGCCGCA TTACTGTCAT ACCAAGTCAT GGCGTCAATA TCATCATTGG CTGTTGAGAT AGCATCTTTT AAAATGCCGC ATACTCTTCC CATGAGCGGA

TCAGCTCACT CGCAGGAAAG

AAAAGGCCGC CATCACAAAA ATAAAGATAC TTCCGACCCT AGCGTGGCGC GGTCGTTCGC ACCGCTGCGC CACGACTTAT GAGGTATGTA GCTACACTAG ACCTTCGGAA TGGTAGCGGT AAGGATCTCA TGGAACGAAA GATCTTCACC AAAGTATATA GAGGCACCTA ACTCCCCGTC CCAGTGCTGC TCAGCAATAA AACTTTATCC TAAGTAGTTC GGCATCGTGG TTCCCAACGA CGGTTAGCTC GTGTTATCAC GCCATCCGTA TCTGAGAATA CGGGATAATA AAAACGTTCT CCAGTTCGAT ACTTTCACCA AAAAAAGGGA TTTTTCAATA TACATATTTG
pGL3-Promoter Vector Sequence (continued)

4201	AATGTATTTA	GAAAAATAAA	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA
4251	AAAGTGCCAC	CTGACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT
4301	GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG
4351	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	CGGCTTTCCC
4401	CGTCAAGCTC	TAAATCGGGG	GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT
4451	ACGGCACCTC	GACCCCAAAA	AACTTGATTA	GGGTGATGGT	TCACGTAGTG
4501	GGCCATCGCC	CTGATAGACG	GTTTTTCGCC	CTTTGACGTT	GGAGTCCACG
4551	TTCTTTAATA	GTGGACTCTT	GTTCCAAACT	GGAACAACAC	TCAACCCTAT
4601	CTCGGTCTAT	TCTTTTGATT	TATAAGGGAT	TTTGCCGATT	TCGGCCTATT
4651	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	TTAACGCGAA	TTTTAACAAA
4701	ATATTAACGC	TTACAATTTG	CCATTCGCCA	TTCAGGCTGC	GCAACTGTTG
4751	GGAAGGGCGA	TCGGTGCGGG	CCTCTTCGCT	ATTACGCCAG	CCCAAGCTAC
4801	CATGATAAGT	AAGTAATATT	AAGGTACGGG AGGTACTTGG AGCGGCCGCA		
4851	ATAAAATATC	TTTATTTTCA	TTACATCTGT	GTGTTGGTTT	TTTGTGTGAA
4901	TCGATAGTAC	TAACATACGC	TCTCCATCAA	AACAAAACGA	AACAAAACAA
4951	ACTAGCAAAA	TAGGCTGTCC	CCAGTGCAAG	TGCAGGTGCC	AGAACATTTC
5001	TCTATCGATA				

K. pGL3-Control Vector Restriction Sites and Sequence

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that this information has not been verified by restriction digestion with each enzyme listed. The location given specifies the 3^{\prime} end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. Vector sequences are also available in the GenBank ${ }^{\circledR}$ database (GenBank ${ }^{\circledR} / E M B L$ Accession Number U47296) and on the Internet at www.promega.com/vectors/.

Table 12. Restriction Enzymes That Cut the pGL3-Control Vector Between 1 and 5 Times.

Enzyme	\# of Sites	Location	Enzyme	\# of Sites	Location
Acc I	1	2449	EcolCR I	1	9
Acc III	2	975, 1491	EcoN I	3	837, 1237, 1897
Acc65 I	1	1	Ehe I	1	314
Acy I	4	287, 313, 1706, 4128	Fsel	1	1953
Aff III	3	15, 773, 2698	Fsp I	2	3813, 4986
Alw26 I	5	1303, 1535, 1601,	Hinc II	3	1584, 2094, 2450
		3652, 4428	Hind II	3	1584, 2094, 2450
Alw44 I	2	3012, 4258	Hind III	1	245
Alw N I	1	3114	Hpal	1	2094
AspH I	5	11, 1745, 3016,	Hsp92 I	4	287, 313, 1706, 4128
		4177, 4262	Kas I	1	312
Aval	3	26, 32, 1336	Kpn I	1	5
Ava II	3	1459, 3729, 3951	Mlu I	1	15
Avr II	1	229	Nae I	3	1951, 2568, 4637
BamH I	1	2442	Nar I	1	313
Ban II	4	11, 33, 1304, 4669	Ncol	1	278
Bbel	1	316	NgoM IV	3	1949, 2566, 4635
Bbs I	4	290, 1568, 1684, 2527	Nhe I	1	21
Bbul	3	943, 2300, 2372	Not I	1	5089
Bcll	1	860	Nsil	2	2298, 2370
BgII	3	182, 3711, 4979	Nsp I	4	943, 2300, 2372,
BgIII	1	36			2702
Bsal	1	3652	PaeR7 1	1	32
BsaA I	1	4740	Ppu10 I	2	2294, 2366
BsaB I	2	48, 2195	PpuM I	1	1459
BsaH I	4	287, 313, 1706,4128	PshA I	1	2513
BsaM I	3	252, 2015, 2108	Psp5 II	1	1459
Bsm I	3	252, 2015, 2108	PspA I	1	26
BspH I	3	863, 3418, 4426	Pvul	2	3961, 5007
BspM I	3	1669, 1678, 5219	Sac I	1	11
Bsr BR I	2	48, 2195	Sall	1	2448
BsıG I	1	770	Scal	3	445, 4071, 5154
BssS I	2	2871, 4255	Sfil	1	182
BstZ I	3	1947, 1951, 5089	SgrA I	1	1708
Cla 1	3	2189, 5147, 5251	Sin I	3	1459, 3729, 3951
Csp45 I	1	449	Smal	1	28
Dral	4	2155, 3457, 3476,	Sph I	3	943, 2300, 2372
		4168	Srf I	1	28
Dra II	1	1459	Ssp I	3	4395, 4948, 5063
Dra III	1	4743	Stul	1	228
Drd I	3	1681, 2806, 4787	Sty I	2	229, 278
Dsal	2	278, 650	Vspl	1	3763
Eag I	3	1947, 1951, 5089	Xbal	1	1934
Ec/HK I	1	3591	Xcm I	1	1015
Eco47 III	1	2574	Xho I	1	32
Eael	4	1947, 1951, 3979,	Xmal	1	26
Eco52 I	3	1947, 1951, 5089	Xmn I	1	4190

Table 13. Restriction Enzymes That Do Not Cut the pGL3-Control Vector.

Aat II	BbrP I	BstE II	EcoR V	Pmel	SnaB I
Acc B7 I	Blp I	Bst I	I-Ppol	Pm/l	Spe I
Affll	Bpu 1102\|	Bsu36 I	Ndel	PstI	Spll
Age I	Bsp120 I	Csp I	Nru I	Pvu II	Sse8387 I
Apal	Bss H II	Eco72 I	Pacl	RstII	Swal
Asc I	Bst1107 I	Eco81 I	PfIM I	Sac II	Tth111 I
Ball	Bst981	EcoR I	PinA I	Sgfl	

Table 14. Restriction Enzymes That Cut the pGL3-Control Vector 6 or More Times.

Acil	Bst71 1	FokI	Mae I	Ncil	SfaN I
Alu I	BstO I	Hae II	Mae II	Nde II	TaqI
Ban I	BstU I	Hae III	Mae III	Nla III	Tfil
BbvI	Cfol	Hgal	Mbol	NaIV	Tru9 I
BsaO I	Cfr 101	Hhal	Mbo II	Ple I	Xho II
BsaJI	Dde I	Hinf I	MnII	Rsal	
Bsp1286 I	Dpn I	Hpa II	Mse I	Sau3 1	
Bsrl	Ear I	Hph I	Msp	Sau96I	
Bsrs I	Fnu4 H	Hsp92 II	MspA1 I	ScrF I	

Note: The enzymes listed in boldface type are available from Promega.

pGL3-Control Vector Sequence

The strand shown is the same as the ssDNA strand produced by this vector and also corresponds to the mRNA synthesized from the luc+ gene.

1 GGTACCGAGC TCTTACGCGT GCTAGCCCGG GCTCGAGATC TGCGATCTGC 51 ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG 101 ССССТААСТС СGCCCAGTTC CGCCCATTCT CCGCCCCATC GCTGACTAAT 151 TTTTTTTATT TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC 201 AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC TAGGCTTTTG CAAAAAGCTT 251 GGCATTCCGG TACTGTTGGT AAAGCCACCA TGGAAGACGC CAAAAACATA 301 AAGAAAGGCC CGGCGCCATT CTATCCGCTG GAAGATGGAA CCGCTGGAGA 351 GCAACTGCAT AAGGCTATGA AGAGATACGC CCTGGTTCCT GGAACAATTG 401 CTTTTACAGA TGCACATATC GAGGTGGACA TCACTTACGC TGAGTACTTC 451 GAAATGTCCG TTCGGTTGGC AGAAGCTATG AAACGATATG GGCTGAATAC 501 AAATCACAGA ATCGTCGTAT GCAGTGAAAA CTCTCTTCAA TTCTTTATGC 551 CGGTGTTGGG CGCGTTATTT ATCGGAGTTG CAGTTGCGCC CGCGAACGAC 601 ATTTATAATG AACGTGAATT GCTCAACAGT ATGGGCATTT CGCAGCCTAC
pGL3-Control Vector Sequence (continued)

651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301 1351 1401 1451 1501 1551 1601 1651

CGTGGTGTTC GTTTCCAAAA AGGGGTTGCA AAAAGCTCCC TACCAGGGAT CGGTTTTAAT CAATTGCACT GTCGCTCTGC тССТАТтTTT ттссаттсСА TGTGGATTTC GAGGAGCCTT тАТтСТССтт AATTTACACG GGAAGCGGTT GGCTCACTGA AAACCGGGCG CGGTCGGTAA GGATCTGGAT GTGTGAGAGG ACCAACGCCT TTACTGGGAC GAAGACGAAC TGATTAAGTA CAAAGGCTAT TTGCTCCAAC CGATGACGCC AGACGATGAC ACCGCGAAAA AGGTCTTACC AGGCCAAGAA CGGCCGCTTC GAGCAGACAT GATAAGATAC CACAACTAGA ATGCAGTGAA AAAAATGCTT CTATTGCTTT ATTTGTAACC ATTATAAGCT AACAATTGCA TTCATTTTAT GTTTCAGGTT TTTTTAAAGC AAGTAAAACC TCTACAAATG TGAACGATGG AGCGGAGAAT GGGCGGAACT TGGGCGGAGT TAGGGGCGGG ACTATGGTTG СтTTGCATAC TTCTGCCTGC TGGGGAGCCT TGCTGACTAA TTGAGATGCA TGCTTTGCAT CTGGGGACTT TCCACACCCT AACTGACACA CATTCCACAG GACCGATGCC CTTGAGAGCC TTCAACCCAG TCAGCTCCTT CGGGGCATGA CTATCGTCGC CGCACTTATG ACTGTCTTCT

AAAAATTTTG TCATGGATTC GTCACATCTC GTCCTTCGAT CTACTGGTCT AGATTCTCGC TACTGCGATT CTACACTCGG TTTGAAGAAG TGCGCTGCTG TTGACAAATA ССССТСТСТА AGGTATCAGG TTACACCCGA TTTTTTGAAG TAATCAAAGA

ATGTAAACAA CTACATTCTG CGTTGACCGC CCGCTGAATT GGTGTCGCAG TGTTGTTTTG ACGTCGCCAG TTTGTGGACG AATCAGAGAG AATTCTAGAG ATTGATGAGT TATTTGTGAA GCAATAAACA CAGGGGGAGG TGGTAAAATC GGGCGGAGTT CTGACTAATT GGGGACTTTC ACTTCTGCCT GCTGGGGAGC CGGATCCGTC CCGGTGGGCG TTATCATGCA
pGL3-Control Vector Sequence (continued)

2551
2601
2651
2701
2751
2801
2851
2901
2951
3001
3051
3101
3151
3201
3251
3301
3351
3401
3451
3501
3551
3601
3651
3701
3751
3801
3851
3901
3951
4001
4051
4101
4151
4201
4251
4301
4351
4401

CAGGTGCCGG CGGTCGTTCG CGGTTATCCA AGGCCAGCAA TCCATAGGCT CAGAGGTGGC TGGAAGCTCC ACCTGTCCGC CGCTGTAGGT TGTGCACGAA ATCGTCTTGA GCCACTGGTA GTTCTTGAAG GTATCTGCGC TCTTGATCCG CAAGCAGCAG тСтТтТСтАС ATTTTGGTCA TTAAAAATGA CTGACAGTTA СтATTTCGTT GATACGGGAG ACCCACGCTC AGGGCCGAGC TATTAATTGT TGCGCAACGT
TTTGGTATGG ATGATCCCCC TCGTTGTCAG GCACTGCATA GACTGGTGAG CGAGTTGCTC AGAACTTTAA CTCAAGGATC CACCCAACTG GCAAAAACAG GAAATGTTGA

ATCAGGGTTA

CAGCGCTCTT GCTGCGGCGA CAGAATCAGG AAGGCCAGGA CCGCCCCCCT GAAACCCGAC CTCGTGCGCT СТтТСТСССт ATCTCAGTTC CCCCCCGTTC GTCCAACCCG

ACAGGATTAG TGGTGGCCTA TCTGCTGAAG GCAAACAAAC ATTACGCGCA GGGGTCTGAC TGAGATTATC AGTTTTAAAT CCAATGCTTA CATCCATAGT GGCTTACCAT ACCGGCTCCA GCAGAAGTGG TGCCGGGAAG TGTTGCCATT CTTCATTCAG ATGTTGTGCA AAGTAAGTTG ATTCTCTTAC TACTCAACCA TTGCCCGGCG AAGTGCTCAT TTACCGCTGT TGAGATCCAG TTCGATGTAA ATCTTCAGCA TCTTTTACTT TCACCAGCGT GAAGGCAAAA TGCCGCAAAA AAGGGAATAA ATACTCATAC TCTTCCTTTT TCAATATTAT TTGTCTCATG AGCGGATACA TATTTGAATG

4451	TATTTAGAAA	AATAAACAAA	TAGGGGTTCC	GCGCACATTT	CCCCGAAAAG
4501	TGCCACCTGA	CGCGCCCTGT	AGCGGCGCAT	TAAGCGCGGC	GGGTGTGGTG
4551	GTTACGCGCA	GCGTGACCGC	TACACTTGCC	AGCGCCCTAG	CGCCCGCTCC
4601	TTTCGCTTTC	ттСССттССт	TTCTCGCCAC	GTTCGCCGGC	TC
4651	AAGCTCTAAA	TCGGGGGCTC	CCTTTAGGGT	TCCGATTTAG	TGCTTTACGG
4701	CACCTCGACC	CCAAAAAACT	TGATTAGGGT	GATGGTTCAC	GTAGTGGGCC
4751	ATCGCCCTGA	TAGACGGTTT	TTCGCCCTTT	GACGTTGGAG	TCCACGTTCT
4801	TTAATAGTGG	ACTCTTGTtC	CAAACTGGAA	CAACACTCAA	СССтАтСТСя
4851	GTCTATTCTT	TTGATTTATA	AGGGATTTTG	CCGATTTCGG	ССтATTGGTT
4901	AAAAAATGAG	CTGATTTAAC	AAAAATTTAA	CGCGAATTTT	AACAAAATA
4951	TAACGCTTAC	AATTTGCCAT	TCGCCATTCA	GGCTGCGCAA	CTGTTGGGA
5001	GGGCGATCGG	TGCGGGCCTC	TTCGCTATtA	CGCCAGCCCA	AGCTACCA
5051	ATAAGTAAGT	AATATtAAGG	TACGGGAGGT	ACTTGGAGCG	GCCGCAATA
5101	AATATCTTTA	TTTTCATTAC	ATCTGTGTGT	TGGTTTTTTG	TGTGAATCGA
5151	TAGTACTAAC	ATACGCTCTC	CATCAAAACA	AAACGAAACA	AAACAAAC
5201	GCAAAATAGG	CTGTCCCCAG	TGCAAGTGCA	GGTGCCAGAA	САТтTСтСтА
5251	TCGATA				

[^5]${ }^{(a)}$ U.S. Pat. No. 5,670,356 has been issued to Promega Corporation for a modified luciferase technology
${ }^{(b)}$ The method of recombinant expression of Coleoptera luciferase is covered by U.S. Pat. Nos. 5,583,024, 5,674,713 and 5,700,673.
${ }^{(c)}$ The PCR process is covered by patents issued and applicable in certain countries. Promega does not encourage or support the unauthorized or unlicensed use of the PCR process.
${ }^{\text {(d) }}$ Licensed under U.S. Pat. No. 5,075,430.
(e)U.S. Pat. No. 5,981,235 and Australian Pat. No. 729932 have been issued to Promega Corporation for methods for isolating nucleic acids using alkaline protease. Other patents are pending. Australian Pat. No. 730718 has been issued to Promega Corporation for an improved filtration system and method. Other patents are pending.
(f)U.S. Pat. Nos. 5,658,548 and 5,808,041 and Australian Pat. No. 689815 have been issued to Promega Corporation for nucleic acid purification on silica gel and glass mixtures. Other patents are pending.
(g)U.S. Pat. No. 6,027,945 and Australian Pat. No. 732756 have been issued to Promega Corporation for methods of isolating biological target materials using silica magnetic particles. Other patents are pending. U.S. Pat. No. 6,194,562 has been issued to Promega Corporation for endotoxin reduction in nucleic acid purification. Other patents are pending.
(h) Transfectam is a registered trademark of Promega Corporation, which sells the Transfectam ${ }^{\circledR}$ product for research purposes only under agreement with CNRS-Paris, owner by assignment of U. S. Pat. No. $5,171,678$. The Transfectam ${ }^{\circledR}$ product was developed by J.P. Behr and J.P. Loeffler and is covered by the aforementioned patent.
(i)The cationic lipid component of the TransFast ${ }^{\text {™ }}$ Transfection Reagent is covered by U.S. Pat. Nos. $5,824,812,5,869,715$ and pending foreign patents.
(j)The cationic lipid component of the Tfx ${ }^{\text {TM }}$ Reagents is covered by U.S. Pat. Nos. 5,527,928, 5,744,625 and 5,892,071, Australian Pat. No. 704189 and other pending foreign patents.
${ }^{(k)}$ U.S. Pat. Nos. 5,283,179, 5,641,641, 5,650,289, 5,814,471, Australian Pat. No. 649289 and European Pat. No. 0553234 have been issued to Promega Corporation for a firefly luciferase assay method, which affords greater light output with improved kinetics as compared to the conventional assay. Other patents are pending. Certain applications of this product may require licenses from others.
${ }^{(1)}$ U.S. Pat. No. 5,955,363 has been issued to Promega Corporation for a vector for in vitro mutagenesis and use thereof.
${ }^{(m)}$ The 7-deaza-dGTP component is licensed from Boehringer Mannheim GmbH under U.S. Pat. Nos. 4,804,748 and 5,480,980.
${ }^{(n)}$ U.S. Pat. Nos. 5,523,206 and 5,654,149, Australian Pat. No. 671820 and European Pat. No. 0610615 B1 have been issued to Promega Corporation for non-radioactive DNA sequencing.
(0)U.S. Pat. No. 5,108,892 has been issued to Promega Corporation for the use of a modified Taq DNA polymerase to determine DNA sequence and amplify DNA sequence.
(p)Notice to Purchaser: Limited Use License

This product is sold under licensing arrangements between Promega Corporation and Invitrogen Corporation. The purchase price of this product includes limited, nontransferable rights under U.S. Pat. Nos. 5,082,784 and 5,192,675 owned by Invitrogen Corporation to use the product only for the internal research purposes of the purchaser. For information on purchasing a license to use the purchased product for purposes other than the internal research of the purchaser, contact the Director of Licensing, Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California 92008.
(q)U.S. Pat. No. 5,391,487 has been issued to Promega Corporation for Restriction Endonuclease Sgf I.
© 1994-2002 Promega Corporation. All Rights Reserved.
Altered Sites, Steady-Glo, Erase-a-Base, fmol, ProFection, Transfectam and Wizard are trademarks of Promega Corporation and are registered with the U.S. Patent and Trademark Office. Bright-Glo, SILVER SEQUENCE, Tfx and TransFast are trademarks of Promega Corporation.

Bacto is a registered trademark of Difco Laboratories, Detroit, Michigan. DNASTAR is a registered trademark of of DNASTAR, Inc. GenBank is a registered trademark of the U.S. Dept. of Health and Human Services.

All prices and specifications are subject to change without prior notice.
Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-todate information on Promega products.

Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

pGL3 Luciferase Reporter Vectors: Experienced User's Protocol

This quick protocol is intended as an easy-to-follow reminder for experienced users. Please follow the complete protocol (Sections IV.A-D) the first time you use the pGL3 Luciferase Reporter Vectors.

Isolation of Plasmid DNA

 (Section IV.D)1. Prepare an overnight culture in 250 ml of LB medium containing $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin.
2. Collect cells by centrifuging at $5,000 \times g$ for 15 minutes at $4^{\circ} \mathrm{C}$. Discard the supernatant.
3. Resuspend cells in 6 ml of freshly prepared ice-cold lysis buffer. Mix carefully using a 10 ml pipet. Incubate the tube containing the cells and lysis buffer in ice water for 20 minutes.
4. Add 12 ml of $0.1 \mathrm{~N} \mathrm{NaOH}, 1 \%$ SDS (prepared fresh). Mix carefully and thoroughly by inversion. Do not vortex.
5. Add 7.5 ml of potassium acetate solution (pH 4.8). Mix carefully by inversion. Incubate tube in ice water for 10 minutes.
6. Centrifuge at $12,000 \times g$ for 15 minutes. Transfer the supernatant to a new tube, avoiding the white precipitate. Add $50 \mu \mathrm{l}$ of RNase A ($1 \mathrm{mg} / \mathrm{ml}$ stock) to the supernatant. Incubate for 20 minutes at $37^{\circ} \mathrm{C}$.
7. Extract with one volume of TE-saturated phenol:chloroform:isoamyl alcohol. Centrifuge at $12,000 \times g$ for 10 minutes.
8. Save the upper, aqueous phase and repeat the TE-saturated phenol:chloroform:isoamyl alcohol extraction described in Step 7.
9. Extract with one volume of chloroform:isoamyl alcohol (24:1) by vortexing for 1 minute. Centrifuge at $12,000 \times g$ for 10 minutes.
10. Transfer the upper aqueous phase to a new tube and add 2 volumes of 100% ethanol. Centrifuge at $12,000 \times g$ for 20 minutes.
11. Optional: Dissolve the pellet in 1.6 ml of water. Add 0.4 ml of 4 M NaCl and mix. Add 2 ml of $13 \%(\mathrm{w} / \mathrm{v})$ polyethylene glycol and mix. Incubate the tube in ice water for 60 minutes. Centrifuge at $12,000 \times g$ for 10 minutes.
12. Remove the supernatant and wash the pellet with 70% ethanol. Centrifuge at $12,000 \times g$ for 5 minutes.
13. Dry the pellet under vacuum. Dissolve the pellet in water or TE buffer (100-500 μ l).

[^0]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

[^1]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

[^2]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

[^3]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

[^4]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

[^5]: Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Toll Free in USA 800-356-9526 • Telephone 608-274-4330 • Fax 608-277-2516 • www.promega.com

